approximate estimates - definizione. Che cos'è approximate estimates
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è approximate estimates - definizione

COMPUTATIONAL METHOD USED TO ESTIMATE THE POSTERIOR DISTRIBUTIONS OF MODEL PARAMETERS
Approximate Bayesian Computation; Approximate bayesian computation; ABC inference

Approximate inference         
METHODS TO DEVELOP REALISTIC MODELS FROM BIG DATA
Approximate Inference
Approximate inference methods make it possible to learn realistic models from big data by trading off computation time for accuracy, when exact learning and inference are computationally intractable.
Approximate entropy         
  • Illustration of the Heart Rate Sequence
Approximate Entropy
In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data.
Approximate fibration         
Draft:Approximate fibration; Manifold approximate fibration
In algebraic topology, a branch of mathematics, an approximate fibration is a sort of fibration such that the homotopy lifting property holds only approximately. The notion was introduced by Coram and Duvall in 1977.

Wikipedia

Approximate Bayesian computation

Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics that can be used to estimate the posterior distributions of model parameters.

In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate.

ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection.

ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences, e.g. in population genetics, ecology, epidemiology, systems biology, and in radio propagation.